Markovian Inference in Belief Networks

نویسندگان

  • Brendan J. Frey
  • Christopher M. Bishop
چکیده

Bayesian belief networks can represent the complicated probabilistic processes that form natural sensory inputs. Once the parameters of the network have been learned, nonlinear inferences about the input can be made by computing the posterior distribution over the hidden units (e.g., depth in stereo vision) given the input. Computing the posterior distribution exactly is not practical in richly-connected networks, but it turns out that by using a variational (a.k.a., mean field) method, it is easy to find a product-form distribution that approximates the true posterior distribution. This approximation assumes that the hidden variables are independent given the current input. In this paper, we explore a more powerful variational technique that models the posterior distribution using a Markov chain. We compare this method with inference using mean fields and mixtures of mean fields in randomly generated networks. Submitted to NIP98, Algorithms and Architectures, oral presentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

Efficient Search-Based Inference for noisy-OR Belief Networks: TopEpsilon

Inference algorithms for arbitrary belief networks are impractical for large, complex belief networks. Inference algorithms for specialized classes of belief networks have been shown to be more efficient. In this paper, we present a searchbased algorithm for approximate inference on arbitrary, noisy-OR belief networks, generalizing earlier work on search-based inference for twolevel, noisy-OR b...

متن کامل

Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach

In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998